Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shui-Sheng Chen, Shu-Ping Zhang, Cong-Bao Huang and Si-Chang Shao*

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.006 Å R factor = 0.100 wR factor = 0.183 Data-to-parameter ratio = 9.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(4-Aminophenyl)ethanone isonicotinoylhydrazone

The title molecule, $C_{14}H_{14}N_4O$, adopts a *trans* configuration with respect to the C=N double bond. The dihedral angle between the two rings is 73.1 (4)°. The crystal structure is stabilized by intermolecular N-H···N and N-H···O hydrogen bonds which link the molecules into a chain along the *c* axis.

Received 17 November 2005 Accepted 28 November 2005 Online 7 December 2005

Comment

The background to this study is described in the first paper of this series (Xie *et al.*, 2006).

In the title compound, (I) (Fig. 1), the C7=N2 bond, 1.277 (5) Å, and the C9-N3 bond, 1.340 (5) Å, are both shorter than normal because of conjugation effects. All other bond lengths are within normal ranges (Allen *et al.*, 1987). The dihedral angle between the benzene and pyridine rings [73.1 (4)°] is significantly larger than normal due to the steric effect of the C8 methyl substituent. The structure of (I) is stabilized by intermolecular $N-H\cdots N$ and $N-H\cdots O$ hydrogen bonds, forming chains along the *c* axis (Table 1 and Fig. 2).

Experimental

1-(4-Aminophenyl)ethanone (0.2 mmol, 27 mg) and isonicotinohydrazide (0.2 mmol, 27.4 mg) were dissolved in methanol (10 ml). The

Figure 1 The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. mixture was stirred at room temperature for 10 min. to give a clear yellow solution. The solution was set aside for 8 d to allow slow evaporation of the solvent. Large colourless block-shaped crystals separated; these were collected and washed three times with water.

 $D_r = 1.352 \text{ Mg m}^{-3}$

Cell parameters from 1324

Mo $K\alpha$ radiation

reflections

 $\theta = 5.2-53.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

T = 298 (2) K

Block, colourless

 $0.30 \times 0.20 \times 0.20 \mbox{ mm}$

Crystal data

 $\begin{array}{l} C_{14}H_{14}N_4O\\ M_r = 254.29\\ \text{Monoclinic, } P2_1/n\\ a = 7.9137 \ (15) \ \mathring{A}\\ b = 5.3466 \ (10) \ \mathring{A}\\ c = 29.650 \ (6) \ \mathring{A}\\ \beta = 95.415 \ (3)^{\circ}\\ V = 1248.9 \ (4) \ \mathring{A}^3\\ Z = 4 \end{array}$

Data collection

Bruker SMART APEX area-	2193 independent reflections
detector diffractometer	1936 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.043$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 2002)	$h = -9 \rightarrow 9$
$T_{\min} = 0.974, T_{\max} = 0.982$	$k = -6 \rightarrow 6$
5756 measured reflections	$l = -29 \rightarrow 35$

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.034P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.100 & + 1.5639P] \\ wR(F^2) = 0.183 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.33 & (\Delta/\sigma)_{max} < 0.001 \\ 2193 \ reflections & \Delta\rho_{max} = 0.31 \ e \ {\rm \AA}^{-3} \\ 228 \ parameters & \Delta\rho_{min} = -0.23 \ e \ {\rm \AA}^{-3} \\ \mbox{All H-atom parameters refined} \end{array}$

Table 1

		•	
Hydrogen-bond	geometry	(A,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1A \cdots N4^{i}$	0.84 (5)	2.20 (5)	3.018 (6)	164 (4)
$N3-H3A\cdotsO1^{ii}$	0.85 (4)	2.48 (4)	3.320 (5)	169 (3)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) x, y - 1, z.

All H atoms were initially located in a difference Fourier map and were refined freely with isotropic displacement parameters, giving

The crystal packing of (I), viewed along the a axis. Dashed lines indicate intermolecular hydrogen bonds.

N–H distances in the range 0.84 (5) to 0.87 (5) and C–H distances in the range 0.89 (5) to 1.01 (4) Å.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXL97*.

The authors thank the Education Office of Anhui Province, China, for research grant No. 2005kj137, and Fuyang Normal College for the research grant No. 2005LZ01.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winconsin.
- Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xie, Y.-H., Sheng, L.-Q., Zhu, W. & Shao, S.-C. (2006). Acta Cryst. E62, 026–027.